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Summary 

We revisit the classical problem of 1-D non-linear inversion of seismic data with absorption. The basic 

formulation of the forward problem is governed by the Riccati equation and with interbed multiples 

included (Gjevik et al, 1976). In this paper, the corresponding nonlinear inversion is solved by the use 

of a least-squares formulation in the frequency-domain with regularization included. A simple 

synthetic data example is employed to demonstrate the approach. 
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Non-linear modeling of absorption employing the Riccati equation 

Assume monochromatic plane-waves propagating along a vertical axis. Let P define the stress 

(pressure) and W the displacement. Density is ρ. Newton’s second law gives: 

02 =+ W
dz

Pd
           (1) 

Correspondingly, a stress-strain relationship of the following form is assumed (Hook’s law): 

dz

Wd
YP r

2=           (2)

  

In Eq.(2) vr is the reference velocity which could be taken as the group velocity in case of dispersion. 

The function Y represents depth and frequency-dependent absorption. 

In case of no damping, Y=1 and Eq.(2) is simply Hookes law.  

Combination of Eqs.(1) and (2) gives Helmholtz equation (assume constant density) 
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In case of a layer with constant velocity and absorption function Y, plane-wave solutions of Eq. (3) 

can be written formally on the simple form (positive z-axis pointing downwards) 

U=a exp[ikz] , D=b exp[-ikz] , k=kr – ki (kr,ki ≥0)       (4) 

With U and D representing respectively upward and downward propagating components. Thus, the 

total field can be written 

P=U+D            (5) 

From eq. (1) and by using Eqs.(4) and (5) it follows that 
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A depth-varying model can be assumed as the limit of an infinite number of infinitesimal layers. For 

such a model, the relation in Eq. (6) is also assumed to be valid. Differentiation of Eq.(6) with respect 

to z gives (also making use of Eq.(1)) 
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Consider now the last term on the RHS of Eq.(7), a further simplification can be obtained by studying 

(small to moderate absorption) 
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Where r represents the depth-dependent ‘reflectivity’ per depth unity 

Combination of Eqs.(1) and (6) gives 
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A main result is obtained now by combining Eqs. (7)-(9)  
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Introduce now the ratio K=U/D that is the reflection coefficient, and differentiate it with respect to 

depth 
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Finally, by combining Eqs.(10) and (11) gives the Riccati equation (Gjevik et al, 1976) 
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Since vertically travelling waves are considered, the transformation from depth to two-way traveltime 

is straightforward 
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Which gives the travel time version of Eq.(29) 
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By noticing that  

  −− −
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0

2/1 ),(exp))),(exp( dYi   is an integrating factor for this Riccati equation, it can 

be rewritten on the following form: 
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Assume now the following boundary condition: K=0 when τ≥T. Integration of Eq. (15)  now gives the 

solution  
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Which can be arranged as 
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Equation (18) is now the starting point for a modeling algorithm. 

 

Choice of absorption model 

Following Horton (1959) we introduce the notation for the absorption function Y 

),(),(),(  iBAY +=          (19) 

In his paper, Horton  gives examples of values of A and B for various absorption models that can be  

causal or non-causal. Employing Eq (3) the wavenumber k can now be expressed as (B<(<)A) 
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Our objective is to find a set of A and B which fulfills the causality criterion. For a more complete 

discussion about dispersion and attenuation models, the reader is referred to Ursin and Toverud 

(2002). Sørsdal (1981) was the first to introduce Eq. (20) into the Riccati equation.   In case of a 

constant-Q model (Kjartansson, 1979), the wavenumber k can be written on the following form 
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Where α is the absorption coefficient and φ is the phase of the ‘absorption filter’. In order to ensure 

causality, the filter should be minimum phase. 
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We introduce a Kolsky type of phase-velocity model (Kolsky, 1956) 
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Which in combination  with Eq.(21) gives  
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Direct comparison between Eqs. (20) and (23) gives 
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In the actual application we follow Wang (2008) and choose the highest possible (tuning) frequency of 

the signal band as the reference. With time-sampling ∆τ=0.004 s this will be the Nyquist frequency 

125 Hz. Wang called this model ‘modified Kolsky’ This absorption model is assumed to be causal, at 

least in an approximate way, since it is closely related to the power law of Strick(1967) which satisfies 

the Kramers-Krönigs relations. 

Non-linear inversion 

Consider now Eq. (18) in the limit τ→0, which gives the ‘seismogram’ 
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Introduce ‘reflectivity’ series 
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Combination of  Eqs. (25) and (26) gives 
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Originally, seismogram recorded in timedomain, i.e. k(t,0), and assume sampled with a total of NT- 

samples. Fourier transform of the data will give the same number of monochromatic seismograms.  

Hagos (2016) presented the theory in his thesis and made some computations based on the reflectivity. 

We have also made some calculations based on the impedance as Gjevik did in his paper. To do this 

we have to introduce the matrix system Eq.(28).  
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For a given iteration number n, we can solve for the corresponding reflectivity series by solving Eq. 

(28) employing standard least squares inversion. Note that K0
2=0. After a new estimate of the 

reflectivity series has been obtained, an update of Ki,n 2 can be obtained by solving the forward 

problem in Eq. (18). Iterations are carried out until the relative change in reflectivity is below a certain 

user threshold. 

Numerical example 

First controlled data was generated for the five-layer model described in Table 1 with absorption and  

interbed multiples. We use a Ricker pulse with center-frequency 40 Hz convolved with the reflectivity 

series Eq.(26). Figure 1.a. shows (left) the synthetics Eq. (18) with and without absorption and the 

inversion Eq.(28)  (1.iteration) right. Fig.1.b. (left) shows the inversion with absorption after 5 

iterations. The reflection coefficients of the model is to the right. The effects of absorption have been 

well compensated for, interbed multiples are removed and transmission loss restored. Also a small 

phase displacement for inversion with absorption is corrected for. This is visible for late arrivals on 

fig.1.a.(left) where synthetics with absorption is slightly dispersed compared with synthetics without 

absorption. 

Layer 1 Q 

200 

Z (Depth) 

600 

Density ρ 

1.9 

Velocity 

4500 

Layer 2 

 

50 200 2.2 5000 

Layer 3 

 

200 400 2.4 3200 

Layer 4 50 200 2.3 5000 

Layer 5 200 500 2.3 4500 

 

Table 1. Five-layer model 
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Fig.1.b. From: left, Solution Eq. (28) inversion  for the 5.th iteration, Right:Reflection coefficient for 

the model (Table 1). 

Fig.1.a. From left: Synthetics solution Eq. (18) filled black with absorption, and without absorption. 

Right: Inversion Eq.28 solution with absorption after 1 iteration.  
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For our discussion of the inversion  we need to introduce the impedance.  The  relation between  r and 

the impedance makes it possible to  compute the impedance for every solution of r. If the acoustic 

impedance I0 is known at z = o, (or at any depth), I is also uniquely determined as a function of τ. 

From Eq. (8) we can deduce after converting to two-way time:  

=




0

0 )(2exp( drII )          (29)  

where I0=ρ0 ѵ0 and I= ρ ѵ.   I/I0 will give us a dimensionless relative impedance that is presented on 

fig.2.  

Now we will plot the impedance of the model and compare it with the impedance of the solution for 

first and last iteration. Fig.2 shows the full inversion where the impedance model is marked with 

dotted line.  

                              

 I/I0 

Fig.2. From left: solution Eq.(29)  for first and last iteration (inversion) compared with the model 

(dotted line).Absorption and multiples are removed.  

We notice that the interbed multiples introduced in the model by iterations and easy to see on fig.1.a  

are very well removed in the inversion after 5.iterations (fig.1.b). We also can confirm this on fig.2. A 

smoother graph on fig.2. suggests that interbed multiples are removed, and a graph close to the model 

indicates we have restored transmission loss and attenuation.  
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Inversion using changed Q-values 

To see the importance of the correct Q-value in the inversion  process, different Q-values are used in 

the inversion than in the input synthetic seismogram. Fig.3.a. shows over-estimation of damping 

where the Q-values of the model are scaled with a factor of 0.9 in the inversion giving more 

absorption in the inversion than in the synthetics. The impedance shows that the inversion does not 

give as good reconstruction of the model (dotted line) compared to the inversion where the same Q-

values where used both for the synthetics and the inversion. (Fig.2). Fig.3.b. shows under-estimation 

of damping scaling the Q-values with a factor of 1.2. Also this example shows deviation from fig.2. 

The impedance on fig.2 compared with fig.3.a and b. show clearly that we can recover the impedance 

well when the Q-value estimated in the inversion is the same as is used in the model and both over and 

under-estimation can give deviation from the model.  

 I/I0 

Fig.3.a. Q-values used in solution fig.2 is scaled with a factor 0.9. (over-estimation of absorption)  
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I/I0 

Fig.3.b. Q-values used in solution fig.2 is scaled with a factor 1.2. (under-estimation of absorption) 
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Inversion with noise 

Finally we added noise to the data. The resulting impedance is showed on fig.3.c.. 1. Iteration in 

inversion is closer to model than the full inversion. However, the interbed multiple after latest arrival 

are not removed before full inversion. 

 

Fig.3.c. Noise is added to the synthetics 
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Conclusion 

The results of the preceding sections show that the Riccati equation with Q-filtering  provides a  

method for the construction of synthetic reflection seismograms that is a continuation of the method 

introduced by Nilsen and Gjevik. As long as we use the same absorption model (same Q-values) in the 

inversion than in the input synthetic seismogram we will get a reasonable good result..  

Moreover does this theory describe a method for inverting reflection data, i.e. computing the 

variations in the acoustic impedance within a reflecting layer that can be used in many ways. It 

corrects phase, compensates frequency loss, removes interbed multiples and compensates transmission 

loss in one single process. We have been able to see this on plots of impedance variation following the 

iteration procedure.  

So far we have tested the abilities of the inversion method by inverting a synthetic reflection 

seismograms computed from a simple model. It would, however, be interesting to apply the present 

inversion method to real reflection data from complex structures.  A number of problems will then 

arise and, in the case of no absorption,  some of them were discussed in the paper of Nilsen and 

Gjevik. (1978).  

The main problem is, however, that what Gjevik asked is not fully answered:  will one lose so much 

information or introduce so many errors through the process that the inversion becomes meaningless 

when applied to real prospecting? In view of the success of the introduction of  inverse Q-filtering this 

could soon be answered and we plan to study these problems in the future. 
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